Quasi-orthogonal cocycles and optimal sequences

Dane Flannery, joint with J. A. Armario

August 2, 2019
Cohomology in design theory

Pioneering work by de Launey, Horadam originated the theory of cocyclic pairwise combinatorial designs. A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the orthogonality set chosen for the class of PCDs. Base case of cocyclic development: group development. A $v \times v$ matrix D is group-developed over a group G of order v if D is an image of G's multiplication table, i.e., $D = \left[\phi(x \cdot y) \right]_{x, y \in G}$, some map ϕ.

Regular actions on arrays: D is group-developed over G \iff G acts regularly on D (as a group of pairs of permutation matrices): $P_g\left[\phi(x \cdot y) \right]P_\top g = \left[\phi(xg \cdot y) \right] = D$.

Induced row and column actions are both regular.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.
Pioneering work by de Launey, Horadam originated the theory of *cyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint.
Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.
Cohomology in design theory

Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.

Base case of cocyclic development: group development.

Quasi-orthogonal cocycles and optimal sequences
Pioneering work by de Launey, Horadam originated the theory of cocyclic pairwise combinatorial designs.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the orthogonality set chosen for the class of PCDs.

Base case of cocyclic development: group development. A $v \times v$ matrix D is group-developed over a group G of order v
Cohomology in design theory

Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.

Base case of cocyclic development: group development. A $v \times v$ matrix D is *group-developed* over a group G of order v if D is an image of G's multiplication table.
Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*. A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.

Base case of cocyclic development: group development. A $v \times v$ matrix D is *group-developed* over a group G of order v if D is an image of G's multiplication table, i.e., $D = [\phi(xy)]_{x,y \in G}$, some map ϕ.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Cohomology in design theory

Pioneering work by de Launey, Horadam originated the theory of \textit{cocyclic pairwise combinatorial designs}.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the \textit{orthogonality set} chosen for the class of PCDs.

Base case of cocyclic development: group development. A $v \times v$ matrix D is \textit{group-developed} over a group G of order v if D is an image of G's multiplication table, i.e., $D = [\phi(xy)]_{x,y \in G}$, some map ϕ.

\textbf{Regular actions} on arrays: D is group-developed over $G \leftrightarrow G$ ‘acts regularly on D’ (as a group of pairs of permutation matrices)
Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.

Base case of cocyclic development: group development. A \(v \times v \) matrix \(D \) is *group-developed* over a group \(G \) of order \(v \) if \(D \) is an image of \(G \)'s multiplication table, i.e., \(D = [\phi(xy)]_{x,y \in G} \), some map \(\phi \).

Regular actions on arrays: \(D \) is group-developed over \(G \) \(\iff \) \(G \) ‘acts regularly on \(D \)’ (as a group of pairs of permutation matrices):

\[
P_g[\phi(xy)]P_g^\top = [\phi(xg^{-1}.y)]P_g^\top = [\phi(xg^{-1}.gy)] = D.
\]
Cohomology in design theory

Pioneering work by de Launey, Horadam originated the theory of *cocyclic pairwise combinatorial designs*.

A PCD is a square matrix over an ambient ring whose rows (sometimes, also columns) taken pairwise satisfy some fixed constraint, embodied in the *orthogonality set* chosen for the class of PCDs.

Base case of cocyclic development: group development. A $v \times v$ matrix D is *group-developed* over a group G of order v if D is an image of G's multiplication table, i.e., $D = [\phi(xy)]_{x,y \in G}$, some map ϕ.

Regular actions on arrays: D is group-developed over $G \iff G \text{ acts regularly on } D$ (as a group of pairs of permutation matrices):

$$P_g[\phi(xy)]P_g^\top = [\phi(xg^{-1}.y)]P_g^\top = [\phi(xg^{-1}.gy)] = D.$$

Induced row and column actions are both regular.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

\[G, U \text{ groups, } U \text{ abelian.} \]

\[Z_2(G,U) := \text{group of all maps } \psi: G \times G \to U \text{ such that } \psi(x,y)\psi(xy,z) = \psi(x,yz)\psi(y,z) \forall x,y,z \in G, \]

called cocycles.

Assume \(\psi \) normalized, i.e., \(\psi(1,1) = 1 \), and display as a cocyclic matrix \(M_\psi = [\psi(g,h)] \)

In group development, cocycles are coboundaries \(\partial \phi \), where \(\partial \phi(x,y) = \phi(x) - 1 - \phi(xy) \) for \(\phi: G \to U \) (the ‘splitting case’).
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs.
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

G, U groups, U abelian.
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

\[G, U \text{ groups, } U \text{ abelian. } Z^2(G, U) := \text{group of all maps } \psi : G \times G \to U \text{ such that} \]
\[\psi(x, y)\psi(xy, z) = \psi(x, yz)\psi(y, z) \quad \forall x, y, z \in G, \quad (†) \]
called cocycles.
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

G, U groups, U abelian. $Z^2(G, U) :=$ group of all maps $\psi : G \times G \to U$ such that

$$\psi(x, y)\psi(xy, z) = \psi(x, yz)\psi(y, z) \quad \forall x, y, z \in G,$$

called cocycles. Assume ψ normalized, i.e., $\psi(1, 1) = 1$
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s *Hadamard groups*; Craigen’s *signed permutation groups*.)

G, U groups, U abelian. $Z^2(G, U) :=$ group of all maps $\psi : G \times G \to U$ such that

$$\psi(x, y)\psi(xy, z) = \psi(x, yz)\psi(y, z) \quad \forall x, y, z \in G,$$

called cocycles. Assume ψ normalized, i.e., $\psi(1, 1) = 1$, and display as a cocyclic matrix $M_\psi = [\psi(g, h)]_{g,h\in G}$.
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

G, U groups, U abelian. $Z^2(G, U) :=$ group of all maps $\psi : G \times G \to U$ such that

\[\psi(x, y)\psi(xy, z) = \psi(x, yz)\psi(y, z) \quad \forall x, y, z \in G, \]

called cocycles. Assume ψ normalized, i.e., $\psi(1, 1) = 1$, and display as a cocyclic matrix $M_\psi = [\psi(g, h)]_{g, h \in G}$.

In group development, cocycles are coboundaries $\partial \phi$, where $\partial \phi(x, y) = \phi(x)^{-1}\phi(y)^{-1}\phi(xy)$ for $\phi : G \to U$.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Group development—purely algebraic definition—gives effective tools from algebra to study PCDs.

But the algebraic nature of a group-developed PCD is restrictive, e.g., group-developed Hadamard matrix must have square order.

Cocyclic development generalizes group development, is less restrictive, and seems to be common for many kinds of PCDs. (Cf. Ito’s Hadamard groups; Craigen’s signed permutation groups.)

G, U groups, U abelian. $Z^2(G, U) := \text{group of all maps } \psi : G \times G \to U \text{ such that }$

$$
\psi(x, y)\psi(xy, z) = \psi(x, yz)\psi(y, z) \quad \forall x, y, z \in G,
$$

called cocycles. Assume ψ normalized, i.e., $\psi(1, 1) = 1$, and display as a cocyclic matrix $M_\psi = [\psi(g, h)]_{g,h\in G}$.

In group development, cocycles are coboundaries $\partial \phi$, where $\partial \phi(x, y) = \phi(x)^{-1}\phi(y)^{-1}\phi(xy)$ for $\phi : G \to U$ (the ‘splitting case’).
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G, \langle -1 \rangle)$ is orthogonal if M_ψ is Hadamard.
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G, \langle -1 \rangle)$ is orthogonal if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design.
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G,\langle -1 \rangle)$ is *orthogonal* if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an $n \times n \langle -1 \rangle$-matrix H, the *expanded design* \mathcal{E}_H is $\begin{bmatrix} H & -H \\ -H & H \end{bmatrix}$.
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G, \langle -1 \rangle)$ is orthogonal if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an $n \times n \langle -1 \rangle$-matrix H, the expanded design \mathcal{E}_H is $[H -H; -H H]$; H is cocyclic $\iff \mathcal{E}_H$ is group-developed over a group containing a central involution that acts as $(\begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix}, \begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix})$.

Note: if H is Hadamard, regular group acting on \mathcal{E}_H is a Hadamard group.

Associativity of multiplication in this central extension of $\langle -1 \rangle$ by G is (\dagger).

Lemma \(\psi\) is orthogonal \iff no. $+1$s = no. -1s in every non-initial row of M_ψ. That is, a cocyclic $\langle -1 \rangle$-matrix H is Hadamard iff its row excess $\text{RE}(H) := \sum_{i \geq 2} |\sum_{j \geq 1} h_{i,j}|$ is optimal (least, i.e., zero).
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G, \langle -1 \rangle)$ is orthogonal if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an $n \times n \langle -1 \rangle$-matrix H, the expanded design \mathcal{E}_H is $\begin{bmatrix} H & -H \\ -H & H \end{bmatrix}$; H is cocyclic $\iff \mathcal{E}_H$ is group-developed over a group containing a central involution that acts as $(\begin{bmatrix} 0 & 1_n \\ 1_n & 0_n \end{bmatrix}, \begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix})$.

Note: if H is Hadamard, regular group acting on \mathcal{E}_H is a Hadamard group.
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G, \langle -1 \rangle)$ is orthogonal if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an $n \times n \langle -1 \rangle$-matrix H, the expanded design \mathcal{E}_H is $\left[\begin{array}{cc} H & -H \\ -H & H \end{array} \right]$; H is cocyclic $\iff \mathcal{E}_H$ is group-developed over a group containing a central involution that acts as $(\begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix}, \begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix})$.

Note: if H is Hadamard, regular group acting on \mathcal{E}_H is a Hadamard group. Associativity of multiplication in this central extension of $\langle -1 \rangle$ by G is (†).
Suppose that \(|G|\) is divisible by 4. Say \(\psi \in Z^2(G, \langle -1 \rangle)\) is *orthogonal* if \(M_\psi\) is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an \(n \times n\) \(\langle -1 \rangle\)-matrix \(H\), the expanded design \(\mathcal{E}_H\) is \(\begin{bmatrix} H & -H \\ -H & H \end{bmatrix}\); \(H\) is cocyclic \(\iff\) \(\mathcal{E}_H\) is group-developed over a group containing a central involution that acts as \((\begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix}, \begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix})\).

Note: if \(H\) is Hadamard, regular group acting on \(\mathcal{E}_H\) is a Hadamard group. Associativity of multiplication in this central extension of \(\langle -1 \rangle\) by \(G\) is (†).

Lemma

\(\psi\) *is orthogonal* \(\iff\) no. +1s = no. -1s in every non-initial row of \(M_\psi\).
Suppose that $|G|$ is divisible by 4. Say $\psi \in Z^2(G,\langle-1\rangle)$ is orthogonal if M_ψ is Hadamard.

The cocycle appears due to a regular group action on another design. E.g., for an $n \times n \langle-1\rangle$-matrix H, the expanded design \mathcal{E}_H is $\begin{bmatrix} H & -H & H \\ -H & H & -H \\ H & -H & H \end{bmatrix}$; H is cocyclic $\iff \mathcal{E}_H$ is group-developed over a group containing a central involution that acts as $\begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix}, \begin{bmatrix} 0_n & 1_n \\ 1_n & 0_n \end{bmatrix}$.

Note: if H is Hadamard, regular group acting on \mathcal{E}_H is a Hadamard group. Associativity of multiplication in this central extension of $\langle-1\rangle$ by G is (†).

Lemma

ψ is orthogonal \iff no. $+1$s $=$ no. -1s in every non-initial row of M_ψ.

That is, a cocyclic $\langle-1\rangle$-matrix H is Hadamard iff its row excess $\text{RE}(H) := \sum_{i \geq 2} \left| \sum_{j \geq 1} h_{i,j} \right|$ is optimal (least, i.e., zero).
Now suppose that $|G| = 4t + 2 > 2$.
Now suppose that $|G| = 4t + 2 > 2$.
So G splits over a normal subgroup N of order $2t + 1$
An analog of orthogonal cocycle for orders $\not\equiv 0 \pmod{4}$

Now suppose that $|G| = 4t + 2 > 2$. So G splits over a normal subgroup N of order $2t + 1$; structure of N and conjugation action of an involution $\not\in N$ on N determine structure of G.

Lemma

Let M be a cocyclic $\langle -1 \rangle$-matrix with indexing group G.

(i) Either exactly half the rows of M are even, or all rows are even; thus $\text{RE}(M) \geq 4t$.

(ii) $\text{RE}(M) = 4t$ iff $\text{abs}(MM^\top) = [4tI + 2J_{0}0 0 4tI + 2J_{0}]$ up to row permutation.
Now suppose that $|G| = 4t + 2 > 2$.
So G splits over a normal subgroup N of order $2t + 1$; structure of N and conjugation action of an involution $\not\in N$ on N determine structure of G.

Lemma

Let M be a cocyclic $\langle -1 \rangle$-matrix with indexing group G.
Now suppose that $|G| = 4t + 2 > 2$. So G splits over a normal subgroup N of order $2t + 1$; structure of N and conjugation action of an involution $\not\in N$ on N determine structure of G.

Lemma

Let M be a cocyclic $\langle -1 \rangle$-matrix with indexing group G.

(i) Either exactly half the rows of M are even, or all rows are even.
Now suppose that $|G| = 4t + 2 > 2$. So G splits over a normal subgroup N of order $2t + 1$; structure of N and conjugation action of an involution $\not\in N$ on N determine structure of G.

Lemma

Let M be a cocyclic $\langle -1 \rangle$-matrix with indexing group G.

(i) Either exactly half the rows of M are even, or all rows are even; thus $\text{RE}(M) \geq 4t$.
Now suppose that $|G| = 4t + 2 > 2$. So G splits over a normal subgroup N of order $2t + 1$; structure of N and conjugation action of an involution $\notin N$ on N determine structure of G.

Lemma

Let M be a cocyclic $\langle -1 \rangle$-matrix with indexing group G.

(i) Either exactly half the rows of M are even, or all rows are even; thus $\text{RE}(M) \geq 4t$.

(ii) $\text{RE}(M) = 4t$ iff

$$\text{abs}(MM^\top) = \begin{bmatrix}
4tI + 2J & 0 \\
0 & 4tI + 2J
\end{bmatrix}$$

up to row permutation.
In analogy with definition (characterization) of orthogonal cocycle:

Definition

$\psi \in Z^2(G, \langle -1 \rangle)$ is **quasi-orthogonal** if $\text{RE}(M_\psi) = 4t$.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
In analogy with definition (characterization) of orthogonal cocycle:

Definition

\[\psi \in Z^2(G, \langle -1 \rangle) \text{ is quasi-orthogonal if } \text{RE}(M_\psi) = 4t. \]

Lemma

\[\psi \text{ is quasi-orthogonal } \iff |\{g \in G \mid \sum_{h \in G} \psi(g, h) = \pm 2\}| = 2t \text{ and } |\{g \in G \mid \sum_{h \in G} \psi(g, h) = 0\}| = 2t + 1. \]
Ehlich–Wojtas bound for $(4t + 2) \times (4t + 2) \\{\pm 1\}$-matrices M:

$$|\det(M)| \leq 2(4t + 1)(4t)^{2t}.$$
Ehlich–Wojtas bound for $(4t + 2) \times (4t + 2) \{\pm 1\}$-matrices M:

$$|\det(M)| \leq 2(4t + 1)(4t)^{2t}.$$

For the bound to be attained, $4t + 1$ must be the sum of two squares.
Ehlich–Wojtas bound for \((4t + 2) \times (4t + 2)\) \(\{\pm 1\}\)-matrices \(M\):

\[|\det(M)| \leq 2(4t + 1)(4t)^{2t}.\]

For the bound to be attained, \(4t + 1\) must be the sum of two squares.

Lemma

If \(M_\psi\) attains the Ehlich–Wojtas bound then \(\psi\) is quasi-orthogonal.
Ehlich–Wojtas bound for \((4t + 2) \times (4t + 2)\) \(\{\pm 1\}\)-matrices \(M\):

\[|\det(M)| \leq 2(4t + 1)(4t)^{2t}.\]

For the bound to be attained, \(4t + 1\) must be the sum of two squares.

Lemma

If \(M_\psi\) *attains the Ehlich–Wojtas bound then* \(\psi\) *is quasi-orthogonal.*

Example. \(\psi \in Z^2(\text{Sym}(3), \langle -1 \rangle)\) *given by*

\[
M_\psi = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1 \\
\end{bmatrix}
\]

is quasi-orthogonal.
Ehlich–Wojtas bound for $(4t + 2) \times (4t + 2) \{\pm 1\}$-matrices M:
$|\det(M)| \leq 2(4t + 1)(4t)^{2t}$. For the bound to be attained, $4t + 1$ must be the sum of two squares.

Lemma

If M_ψ attains the Ehlich–Wojtas bound then ψ is quasi-orthogonal.

Example. $\psi \in Z^2(\text{Sym}(3), \langle -1 \rangle)$ given by

$$M_\psi = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1 \\
\end{bmatrix}$$

is quasi-orthogonal (three rows sum to 0, two rows sum to 2).
Ehlich–Wojtas bound for \((4t + 2) \times (4t + 2)\) \(\{\pm 1\}\)-matrices \(M\):

\[|\det(M)| \leq 2(4t + 1)(4t)^{2t}.\]

For the bound to be attained, \(4t + 1\) must be the sum of two squares.

Lemma

If \(M_\psi\) *attains the Ehlich–Wojtas bound then* \(\psi\) *is quasi-orthogonal.*

Example. \(\psi \in Z^2(Sym(3), \langle -1 \rangle)\) *given by*

\[
M_\psi = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1
\end{bmatrix}
\]

is quasi-orthogonal (three rows sum to 0, two rows sum to 2). But \(\det(M_\psi) = 128\) does not attain the E–W bound \(160\).
Proving existence of cocyclic PCDs is (computationally) hard.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam.

If $|G| = 4t + 2$ and $\psi \in \mathbb{Z}_2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order 2 odd ≤ 42.

Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist (over every possible group)?

Cf. Ito’s non-existence results for Hadamard groups, & classification by ´O Cath´ain and R¨oder yielding other non-examples.

Also, haven’t yet found G of an allowable order for which there are no quasi-orthogonal cocycles whose matrices attain the E–W bound.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order 2 odd ≤ 42. Also have infinite families over cyclic groups. Do quasi-orthogonal cocycles always exist (over every possible group)? Cf. Ito’s non-existence results for Hadamard groups, & classification by ’O Catháin and Röder yielding other non-examples. Also, haven’t yet found G of an allowable order for which there are no quasi-orthogonal cocycles whose matrices attain the E–W bound.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If \(|G| = 4t + 2\) and \(\psi \in Z^2(G, \langle -1 \rangle)\) is a coboundary then \(\psi\) is not quasi-orthogonal (every row in \(M_\psi\) is even).
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2 \cdot \text{odd} \leq 42$.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G,\langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2\cdot \text{odd} \leq 42$. Also have infinite families over cyclic groups.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2.\text{odd} \leq 42$. Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

\[\text{If } |G| = 4t + 2 \text{ and } \psi \in Z^2(G,\langle -1 \rangle) \text{ is a coboundary then } \psi \text{ is not quasi-orthogonal (every row in } M_\psi \text{ is even, } \text{RE}(M_\psi) \geq 8t + 2). \]

Existence of quasi-orthogonal cocycles confirmed by computer \(\forall G \) of order \(2 \text{odd} \leq 42 \). Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist (over every possible group)?
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2.\text{odd} \leq 42$. Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist (over every possible group)?

Cf. Ito’s non-existence results for Hadamard groups
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam.

Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2.\text{odd} \leq 42$. Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist (over every possible group)?

Cf. Ito’s non-existence results for Hadamard groups, & classification by Ó Catháin and Röder yielding other non-examples.
Proving existence of cocyclic PCDs is (computationally) hard. As expected! e.g., Cocyclic Hadamard Conjecture of de Launey and Horadam. Re. existence of quasi-orthogonal cocycles, note

Lemma

If $|G| = 4t + 2$ and $\psi \in Z^2(G, \langle -1 \rangle)$ is a coboundary then ψ is not quasi-orthogonal (every row in M_ψ is even, $\text{RE}(M_\psi) \geq 8t + 2$).

Existence of quasi-orthogonal cocycles confirmed by computer $\forall G$ of order $2 \cdot \text{odd} \leq 42$. Also have infinite families over cyclic groups.

Do quasi-orthogonal cocycles always exist (over every possible group)?

Cf. Ito’s non-existence results for Hadamard groups, & classification by Ó Catháin and Röder yielding other non-examples.

Also, haven’t yet found G of an allowable order for which there are no quasi-orthogonal cocycles whose matrices attain the E–W bound.
Theorem

Let $\psi \in \mathbb{Z}_2^G$, where $|G| = 4t + 2$. If either ψ is quasi-orthogonal, or G is abelian or dihedral and ψ is not a coboundary for dihedral G, then $M_\psi M_{\psi}^T = M_{\psi}^T M_\psi$. In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_{\psi}^T) = I_2 \otimes (4tI_2 + 2J_2).$)

Cf. any (cocyclic) Hadamard matrix obviously commuting with H^T.

Also, if M has determinant attaining the Ehlich–Wojtas bound, then some Hadamard equivalent of M commutes with its transpose.
Let $\psi \in Z^2(G,\langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M \psi M^\top \psi) = I_2 \otimes (4tI_2 + 2J_2).$)

Cf. any (cocyclic) Hadamard matrix obviously commuting with $H \otimes H^\top$.

Also, if M has determinant attaining the Ehlich–Wojtas bound, then some Hadamard equivalent of M commutes with its transpose.
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^\top = M_\psi^\top M_\psi$. In particular, ψ could have been defined quasi-orthogonal cocycle equivalently in terms of optimal column excess.

(Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_\psi^\top) = I_2 \otimes (4t I_2 + 2 J_2)$.)

Cf. any (cocyclic) Hadamard matrix obviously commuting with H^\top.

Also, if M has determinant attaining the Ehlich–Wojtas bound, then some Hadamard equivalent of M commutes with its transpose.
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^\top = M_\psi^\top M_\psi$.

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_\psi^\top) = I_2 \otimes (4tI_2 + 2J_2)$.)

Cf. any (cocyclic) Hadamard matrix obviously commuting with H.

Also, if M has determinant attaining the Ehlich–Wojtas bound, then some Hadamard equivalent of M commutes with its transpose.
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^\top = M_\psi^\top M_\psi$.

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess.
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^T = M_\psi^T M_\psi$.

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_\psi^T) = I_2 \otimes (4tI + 2J)$.)
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^\top = M_\psi^\top M_\psi$.

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_\psi^\top) = I_2 \otimes (4tI + 2J)$.)

Cf. any (cocyclic) Hadamard matrix H obviously commuting with H^\top.
Normality of cocyclic matrices

Theorem

Let $\psi \in Z^2(G, \langle -1 \rangle)$ where $|G| = 4t + 2$. If either

- ψ is quasi-orthogonal, or
- G is abelian or dihedral and ψ is not a coboundary for dihedral G,

then $M_\psi M_\psi^\top = M_\psi^\top M_\psi$.

In particular, could have defined quasi-orthogonal cocycle equivalently in terms of optimal column excess. (Recall that ψ is quasi-orthogonal iff $\text{abs}(M_\psi M_\psi^\top) = I_2 \otimes (4tI + 2J)$.)

Cf. any (cocyclic) Hadamard matrix H obviously commuting with H^\top.

Also, if M has determinant attaining the Ehlich–Wojtas bound, then some Hadamard equivalent of M commutes with its transpose.
Sequences and arrays from cocycles

Let \(\phi = (\phi(0), \ldots, \phi(n-1)) \in \\{\pm 1\}^n \) or \(\{\pm 1, \pm i\}^n \).

\[R_\phi(w) := \sum_{k=0}^{n-1} \phi(k) \phi(k+w), \] periodic autocorrelation of \(\phi \) at shift \(w \).

We have
\[\max_{0 < w < n} |R_\phi(w)| \geq \begin{cases} \frac{1}{n} & \text{if } n \text{ odd}, \\ 2 & \text{if } n \equiv 2 \mod 4. \end{cases} \]
when \(\phi \) binary, and
\[\max_{0 < w < n} |R_\phi(w)| \geq 1 \]
for odd \(n \) when \(\phi \) quaternary.

If \(R_\phi(w) = 0 \) for \(0 < w < n \) then \(\phi \) is perfect.

Conjecture: perfect sequences over \(m \)th roots of unity of length \(>m^2 \) do not exist.

(For \(m = 4 \) see Arasu, de Launey, Ma, On circulant complex Hadamard matrices, Des. Codes Cryptogr. 25 (2002).)

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Sequences and arrays from cocycles

Let \(\phi = (\phi(0), \ldots, \phi(n - 1)) \in \{\pm 1\}^n \) or \(\{\pm 1, \pm i\}^n \).
Sequences and arrays from cocycles

Let \(\phi = (\phi(0), \ldots, \phi(n - 1)) \in \{\pm 1\}^n \) or \(\{\pm 1, \pm i\}^n \).

\[
R_{\phi}(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k + w)}, \text{ periodic autocorrelation of } \phi \text{ at shift } w.
\]
Let \(\phi = (\phi(0), \ldots, \phi(n - 1)) \in \{\pm 1\}^n \) or \(\{\pm 1, \pm i\}^n \).

\(R_\phi(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k + w)} \), periodic autocorrelation of \(\phi \) at shift \(w \).

We have

\[
\max_{0 < w < n} |R_\phi(w)| \geq \begin{cases}
1 & n \text{ odd} \\
2 & n \equiv 2 \mod 4
\end{cases}
\]

when \(\phi \) binary
Sequences and arrays from cocycles

Let \(\phi = (\phi(0), \ldots, \phi(n-1)) \in \{\pm 1\}^n \) or \(\{\pm 1, \pm i\}^n \).

\(R_\phi(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k+w)} \), periodic autocorrelation of \(\phi \) at shift \(w \).

We have

\[
\max_{0 < w < n} |R_\phi(w)| \geq \begin{cases}
1 & n \text{ odd} \\
2 & n \equiv 2 \mod 4
\end{cases}
\]

when \(\phi \) binary, and \(\max_{0 < w < n} |R_\phi(w)| \geq 1 \) for odd \(n \) when \(\phi \) quaternary.
Let $\phi = (\phi(0), \ldots, \phi(n-1)) \in \{\pm 1\}^n \text{ or } \{\pm 1, \pm i\}^n$.

$R_\phi(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k + w)}$, periodic autocorrelation of ϕ at shift w.

We have

$$\max_{0<w<n} |R_\phi(w)| \geq \begin{cases} 1 & n \text{ odd} \\ 2 & n \equiv 2 \mod 4 \end{cases}$$

when ϕ binary, and $\max_{0<w<n} |R_\phi(w)| \geq 1$ for odd n when ϕ quaternary.

If $R_\phi(w) = 0$ for $0 < w < n$ then ϕ is perfect.
Sequences and arrays from cocycles

Let $\phi = (\phi(0), \ldots, \phi(n-1)) \in \{\pm 1\}^n$ or $\{\pm 1, \pm i\}^n$.

$R_{\phi}(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k + w)}$, periodic autocorrelation of ϕ at shift w.

We have

$$\max_{0<w<n} |R_{\phi}(w)| \geq \begin{cases}
1 & n \text{ odd} \\
2 & n \equiv 2 \mod 4
\end{cases}$$

when ϕ binary, and $\max_{0<w<n} |R_{\phi}(w)| \geq 1$ for odd n when ϕ quaternary.

If $R_{\phi}(w) = 0$ for $0 < w < n$ then ϕ is perfect.

Conjecture: perfect sequences over mth roots of unity of length $> m^2$ do not exist.
Sequences and arrays from cocycles

Let $\phi = (\phi(0), \ldots, \phi(n-1)) \in \{\pm 1\}^n$ or $\{\pm 1, \pm i\}^n$.

$$R_\phi(w) := \sum_{k=0}^{n-1} \phi(k)\overline{\phi(k+w)}$$, periodic autocorrelation of ϕ at shift w.

We have

$$\max_{0 < w < n} |R_\phi(w)| \geq \begin{cases} 1 & n \text{ odd} \\ 2 & n \equiv 2 \mod 4 \end{cases}$$

when ϕ binary, and $\max_{0 < w < n} |R_\phi(w)| \geq 1$ for odd n when ϕ quaternary.

If $R_\phi(w) = 0$ for $0 < w < n$ then ϕ is perfect.

Conjecture: perfect sequences over mth roots of unity of length $> m^2$ do not exist. (For $m = 4$ see Arasu, de Launey, Ma, *On circulant complex Hadamard matrices*, Des. Codes Cryptogr. 25 (2002).)
Setting perfect sequences aside, binary sequence ϕ of length n has *optimal autocorrelation* if, for all w, $0 < w < n$:

$$R_{\phi}(w) \in \{0, \pm 4\} \quad (n \equiv 0 \mod 4)$$

$$R_{\phi}(w) \in \{1, -3\} \quad (n \equiv 1 \mod 4)$$

$$R_{\phi}(w) \in \{2, -2\} \quad (n \equiv 2 \mod 4)$$

$$R_{\phi}(w) = -1 \quad (n \equiv 3 \mod 4).$$

A quaternary sequence ϕ of length n has optimal autocorrelation (ϕ is an OQS) if

$$|R_{\phi}(w)| = 1 \quad \text{for all } w, \ 0 < w < n \quad (n \text{ odd})$$

$$\max_{0 < w < n} |R_{\phi}(w)| = 2 \quad (n \text{ even}).$$

In fact can prove that $R_{\phi}(w)$ must be real in first case.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Setting perfect sequences aside, binary sequence ϕ of length n has optimal autocorrelation if, for all w, $0 < w < n$:

\[R_\phi(w) \in \{0, \pm 4\} \quad (n \equiv 0 \mod 4) \]
\[R_\phi(w) \in \{1, -3\} \quad (n \equiv 1 \mod 4) \]
\[R_\phi(w) \in \{2, -2\} \quad (n \equiv 2 \mod 4) \]
\[R_\phi(w) = -1 \quad (n \equiv 3 \mod 4). \]
Setting perfect sequences aside, binary sequence ϕ of length n has \textit{optimal autocorrelation} if, for all w, $0 < w < n$:

\[R_\phi(w) \in \{0, \pm 4\} \quad (n \equiv 0 \mod 4) \]
\[R_\phi(w) \in \{1, -3\} \quad (n \equiv 1 \mod 4) \]
\[R_\phi(w) \in \{2, -2\} \quad (n \equiv 2 \mod 4) \]
\[R_\phi(w) = -1 \quad (n \equiv 3 \mod 4). \]

A quaternary sequence ϕ of length n has optimal autocorrelation (ϕ is an OQS) if

\[|R_\phi(w)| = 1 \text{ for all } w, \ 0 < w < n \ (n \text{ odd}) \]
\[\max_{0 < w < n} |R_\phi(w)| = 2 \quad (n \text{ even}). \]
Setting perfect sequences aside, binary sequence ϕ of length n has **optimal autocorrelation** if, for all w, $0 < w < n$:

\[
R_{\phi}(w) \in \{0, \pm 4\} \quad (n \equiv 0 \mod{4})
\]
\[
R_{\phi}(w) \in \{1, -3\} \quad (n \equiv 1 \mod{4})
\]
\[
R_{\phi}(w) \in \{2, -2\} \quad (n \equiv 2 \mod{4})
\]
\[
R_{\phi}(w) = -1 \quad (n \equiv 3 \mod{4}).
\]

A quaternary sequence ϕ of length n has optimal autocorrelation (ϕ is an OQS) if

\[
|R_{\phi}(w)| = 1 \text{ for all } w, \ 0 < w < n \ (n \text{ odd})
\]
\[
\max_{0 < w < n} |R_{\phi}(w)| = 2 \ (n \text{ even}).
\]

In fact can prove that $R_{\phi}(w)$ must be real in first case.
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992)
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1$; $s := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi: G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$.

A sequence is an s-array with $r = 1$.

For a type vector $z = (z_1, \ldots, z_r) \in \{0, 1\}^r$, let $E = \mathbb{Z}(z_1+1)s_1 \times \cdots \times \mathbb{Z}(z_r+1)s_r$, $H = \{ (h_1, \ldots, h_r) \in E | h_i = 0$ if $z_i = 0$, and $h_i = 0$ or s_i if $z_i = 1 \}$, $K = \{ h \in H | h$ has even weight $\}$.

$H \leq E$ is elementary abelian 2-group, $H/K \cong = \mathbb{Z}_2$ if $z \neq 0$, and $(E/K)/(H/K) \cong = G$.
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1$; $s := (s_1, \ldots, s_r)$.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1; \ s := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi : G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$.
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let \(G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1; s := (s_1, \ldots, s_r). \)

A (binary or quaternary) \(s \)-array is just a map \(\phi : G \rightarrow C = \{\pm 1\} \) or \(\{\pm 1, \pm i\} \). A sequence is an \(s \)-array with \(r = 1 \).
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1; \mathbf{s} := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi : G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$. A sequence is an s-array with $r = 1$.

For a type vector $\mathbf{z} = (z_1, \ldots, z_r) \in \{0, 1\}^r$
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}$, $s_i > 1$; $s : = (s_1, \ldots , s_r)$.

A (binary or quaternary) s-array is just a map $\phi : G \to C = \{\pm 1\}$ or $\{-1, \pm i\}$. A sequence is an s-array with $r = 1$.

For a type vector $z = (z_1, \ldots , z_r) \in \{0, 1\}^r$, let

$$E = \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r}.$$
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}$, $s_i > 1$; $s := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi : G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$. A sequence is an s-array with $r = 1$.

For a type vector $z = (z_1, \ldots, z_r) \in \{0, 1\}^r$, let

$$E = \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r},$$

$$H = \{(h_1, \ldots, h_r) \in E \mid h_i = 0 \text{ if } z_i = 0, \text{ and } h_i = 0 \text{ or } s_i \text{ if } z_i = 1\}.$$
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let \(G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1; \mathbf{s} := (s_1, \ldots, s_r) \).

A (binary or quaternary) \(s \)-array is just a map \(\phi : G \to C = \{\pm 1\} \) or \(\{\pm 1, \pm i\} \). A sequence is an \(s \)-array with \(r = 1 \).

For a type vector \(\mathbf{z} = (z_1, \ldots, z_r) \in \{0, 1\}^r \), let

\[
E = \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r},
\]

\[
H = \{(h_1, \ldots, h_r) \in E \mid h_i = 0 \text{ if } z_i = 0, \text{ and } h_i = 0 \text{ or } s_i \text{ if } z_i = 1\},
\]

\[
K = \{h \in H \mid h \text{ has even weight}\}.
\]
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}$, $s_i > 1$; $\mathbf{s} := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi : G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$. A sequence is an s-array with $r = 1$.

For a type vector $\mathbf{z} = (z_1, \ldots, z_r) \in \{0, 1\}^r$, let

\begin{align*}
E &= \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r}, \\
H &= \{(h_1, \ldots, h_r) \in E \mid h_i = 0 \text{ if } z_i = 0, \text{ and } h_i = 0 \text{ or } s_i \text{ if } z_i = 1\}, \\
K &= \{h \in H \mid h \text{ has even weight}\}.
\end{align*}

$H \leq E$ is elementary abelian 2-group
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let \(G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}, s_i > 1; \ s := (s_1, \ldots, s_r). \)

A (binary or quaternary) \(s \)-array is just a map \(\phi : G \to C = \{\pm 1\} \) or \(\{\pm 1, \pm i\} \). A sequence is an \(s \)-array with \(r = 1 \).

For a type vector \(z = (z_1, \ldots, z_r) \in \{0, 1\}^r \), let

\[
E = \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r},
\]
\[
H = \{(h_1, \ldots, h_r) \in E \mid h_i = 0 \text{ if } z_i = 0, \text{ and } h_i = 0 \text{ or } s_i \text{ if } z_i = 1\},
\]
\[
K = \{h \in H \mid h \text{ has even weight}\}.
\]

\(H \leq E \) is elementary abelian \(2 \)-group, \(H/K \cong \mathbb{Z}_2 \) if \(z \neq 0 \).
Jedwab investigated generalized perfect binary arrays (Des. Codes Cryptogr. 2, 1992); these are cocyclic (Hughes, European J. Combin. 21, 2000).

Let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_r}$, $s_i > 1$; $s := (s_1, \ldots, s_r)$.

A (binary or quaternary) s-array is just a map $\phi: G \to C = \{\pm 1\}$ or $\{\pm 1, \pm i\}$. A sequence is an s-array with $r = 1$.

For a type vector $z = (z_1, \ldots, z_r) \in \{0, 1\}^r$, let

$$E = \mathbb{Z}_{(z_1+1)s_1} \times \cdots \times \mathbb{Z}_{(z_r+1)s_r},$$

$$H = \{(h_1, \ldots, h_r) \in E \mid h_i = 0 \text{ if } z_i = 0, \text{ and } h_i = 0 \text{ or } s_i \text{ if } z_i = 1\},$$

$$K = \{h \in H \mid h \text{ has even weight}\}.$$

$H \leq E$ is elementary abelian 2-group, $H/K \cong \mathbb{Z}_2$ if $z \neq 0$, and

$$(E/K)/(H/K) \cong G.$$
The *expansion* of a binary s-array ϕ with respect to z
The *expansion* of a binary s-array ϕ with respect to z is $\phi' : E \to \{\pm 1\}$ defined by

$$\phi'(x) = \begin{cases}
\phi(\tilde{x}) & x \in \tilde{x} + K \\
-\phi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}$$

where $\tilde{x} = \text{projection of } x \text{ in } G$
The *expansion* of a binary s-array ϕ with respect to z is $\phi' : E \rightarrow \{\pm 1\}$ defined by

$$\phi'(x) = \begin{cases}
\phi(\tilde{x}) & x \in \tilde{x} + K \\
-\phi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}$$

where $\tilde{x} =$ projection of x in G (reduction of x modulo s).
The *expansion* of a binary s-array ϕ with respect to z is $\phi': E \to \{\pm 1\}$ defined by

$$\phi'(x) = \begin{cases}
\phi(\tilde{x}) & x \in \tilde{x} + K \\
-\phi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}$$

where $\tilde{x} = \text{projection of } x \text{ in } G$ (reduction of x modulo s).

For arrays $\varphi: A \to C$ the periodic autocorrelation of φ at shift a is

$$R_{\varphi}(a) := \sum_{b \in A} \varphi(b) \overline{\varphi(a + b)}.$$
The *expansion* of a binary s-array φ with respect to z is $\varphi' : E \to \{\pm 1\}$ defined by

$$
\varphi'(x) = \begin{cases}
\varphi(\tilde{x}) & x \in \tilde{x} + K \\
-\varphi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}
$$

where $\tilde{x} = $ projection of x in G (reduction of x modulo s).

For arrays $\varphi : A \to C$ the periodic autocorrelation of φ at shift a is

$$
R_\varphi(a) := \sum_{b \in A} \varphi(b)\overline{\varphi(a + b)}.
$$

A binary s-array ϕ is a *generalized perfect binary array of type z* if

$$
R_{\phi'}(x) = 0 \quad \forall x \in E \setminus H.
$$
The expansion of a binary s-array ϕ with respect to z is $\phi' : E \to \{\pm 1\}$ defined by

$$\phi'(x) = \begin{cases}
\phi(\tilde{x}) & x \in \tilde{x} + K \\
-\phi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}$$

where $\tilde{x} =$ projection of x in G (reduction of x modulo s).

For arrays $\varphi : A \to C$ the periodic autocorrelation of φ at shift a is

$$R_{\varphi}(a) := \sum_{b \in A} \varphi(b)\overline{\varphi(a + b)}.$$

A binary s-array ϕ is a generalized perfect binary array of type z if

$$R_{\phi'}(x) = 0 \quad \forall x \in E \setminus H.$$

When $z = 0$, this condition becomes $R_{\phi}(x) = 0$ for all $x \in G \setminus \{0\}$.
The expansion of a binary s-array ϕ with respect to z is $\phi' : E \to \{\pm 1\}$ defined by

$$\phi'(x) = \begin{cases}
\phi(\tilde{x}) & x \in \tilde{x} + K \\
-\phi(\tilde{x}) & x \notin \tilde{x} + K
\end{cases}$$

where $\tilde{x} = \text{projection of } x \text{ in } G$ (reduction of x modulo s).

For arrays $\varphi : A \to C$ the periodic autocorrelation of φ at shift a is

$$R_{\varphi}(a) := \sum_{b \in A} \varphi(b)\varphi(a + b).$$

A binary s-array ϕ is a generalized perfect binary array of type z if

$$R_{\phi'}(x) = 0 \quad \forall x \in E \setminus H.$$

When $z = 0$, this condition becomes $R_{\phi}(x) = 0$ for all $x \in G \setminus \{0\}$; if the latter holds then ϕ is a perfect binary array.
PBS (PBA when $r = 1$) exist only at length 4 (?); PBA for $r > 1$ exist as Menon-Hadamard difference sets.
PBS (PBA when $r = 1$) exist only at length 4 (?); PBA for $r > 1$ exist as Menon-Hadamard difference sets.

Jedwab: a GPBA(s) is equivalent to a $(|G|, 2, |G|, |G|/2)$-relative difference set in E/K relative to H/K.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
PBS (PBA when $r = 1$) exist only at length 4 (?); PBA for $r > 1$ exist as Menon-Hadamard difference sets.

Jedwab: a GPBA(s) is equivalent to a $(|G|, 2, |G|, |G|/2)$-relative difference set in E/K relative to H/K.

Then by a result of Jungnickel, a GPBA(s) can exist only if there is a Hadamard matrix of order $|G|$.
PBS (PBA when $r = 1$) exist only at length 4 (?); PBA for $r > 1$ exist as Menon-Hadamard difference sets.

Jedwab: a GPBA(s) is equivalent to a $(|G|, 2, |G|, |G|/2)$-relative difference set in E/K relative to H/K.

Then by a result of Jungnickel, a GPBA(s) can exist only if there is a Hadamard matrix of order $|G|$.

Hence, for $|G|$ divisible by 4, a GPBA(s) is equivalent to a cocyclic Hadamard matrix over the abelian group G (de Launey, F, Horadam).
PBS (PBA when $r = 1$) exist only at length 4 (?); PBA for $r > 1$ exist as Menon-Hadamard difference sets.

Jedwab: a GPBA(s) is equivalent to a $(|G|, 2, |G|, |G|/2)$-relative difference set in E/K relative to H/K.

Then by a result of Jungnickel, a GPBA(s) can exist only if there is a Hadamard matrix of order $|G|$.

Hence, for $|G|$ divisible by 4, a GPBA(s) is equivalent to a cocyclic Hadamard matrix over the abelian group G (de Launey, F, Horadam).

In particular, when $|G|$ is square, a binary array ϕ is perfect $\Leftrightarrow \partial\phi$ is orthogonal.
PBS (PBA when \(r = 1 \)) exist only at length 4 (?); PBA for \(r > 1 \) exist as Menon-Hadamard difference sets.

Jedwab: a GPBA(s) is equivalent to a \((|G|, 2, |G|, |G|/2)\)-relative difference set in \(E/K \) relative to \(H/K \).

Then by a result of Jungnickel, a GPBA(s) can exist only if there is a Hadamard matrix of order \(|G|\).

Hence, for \(|G|\) divisible by 4, a GPBA(s) is equivalent to a cocyclic Hadamard matrix over the abelian group \(G \) (de Launey, F, Horadam).

In particular, when \(|G|\) is square, a binary array \(\phi \) is perfect \(\iff\) \(\partial \phi \) is orthogonal (the splitting case).
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A generalized optimal binary array of type z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2 |H|\} \forall x \in E \setminus H$
- $|\{x \in E | R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

A generalized optimal binary sequence (GOBS) has $r = z_1 = 1$.

Theorem

Let ϕ be a binary sequence of length 2^m, $m > 1$ odd. Then ϕ is a GOBS(2^m) ⇔ there is a GOBA(2, m)ϕ of type $(1, 0)$ ⇔ there is a quasi-orthogonal cocycle $\psi \in Z_2(Z_2^m, \langle -1 \rangle)$.

Proof:

Use isomorphism $Z_2 \times Z_m \cong Z_2^m$ to pass between ϕ and ϕ', deploy signs suitably; $\psi = f_{z} \partial \phi$, where $f_{z} \not\in B_2(Z_2^m, \langle -1 \rangle)$.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Now let \(|G| \equiv 2 \mod 4\), say \(s_1/2, s_2, \ldots, s_r\) are odd.
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A generalized optimal binary array of type z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \ \forall x \in E \setminus H$
- $|\{x \in E \mid R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A generalized optimal binary array of type z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \ \forall x \in E \setminus H$
- $|\{x \in E \mid R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

A generalized optimal binary sequence (GOBS) has $r = z_1 = 1$.
Optimal sequences and arrays of length $\equiv 2 \mod 4$

Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A **generalized optimal binary array of type** z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \ \forall x \in E \setminus H$
- $\left|\left\{x \in E \mid R_{\phi'}(x) = 0\right\}\right| = |E|/2$ if $z_1 = 1$.

A **generalized optimal binary sequence** (GOBS) has $r = z_1 = 1$.

Theorem

Let φ be a binary sequence of length $2m$, $m > 1$ odd.
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A *generalized optimal binary array of type* z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \forall x \in E \setminus H$
- $|\{x \in E \mid R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

A *generalized optimal binary sequence* (GOBS) has $r = z_1 = 1$.

Theorem

Let φ be a binary sequence of length $2m$, $m > 1$ odd. Then φ is a GOBS($2m$) \iff there is a GOBA($2, m$) ϕ of type (1, 0)
Optimal sequences and arrays of length $\equiv 2 \mod 4$

Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A generalized optimal binary array of type z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \ \forall x \in E \setminus H$
- $|\{x \in E \mid R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

A generalized optimal binary sequence (GOBS) has $r = z_1 = 1$.

Theorem

Let φ be a binary sequence of length $2m$, $m > 1$ odd. Then φ is a GOBS($2m$) \iff there is a GOBA($2, m$) ϕ of type $(1, 0)$ \iff there is a quasi-orthogonal cocycle $\psi \in Z^2(\mathbb{Z}_{2m}, \langle -1 \rangle)$.
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A **generalized optimal binary array of type** z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \forall x \in E \setminus H$
- $|\{x \in E \mid R_{\phi'}(x) = 0\}| = |E|/2$ if $z_1 = 1$.

A **generalized optimal binary sequence** (GOBS) has $r = z_1 = 1$.

Theorem

Let φ be a binary sequence of length $2m$, $m > 1$ odd. Then φ is a GOBS$(2m) \iff$ there is a GOBA$(2, m) \phi$ of type $(1, 0) \iff$ there is a quasi-orthogonal cocycle $\psi \in Z^2(\mathbb{Z}_2m, \langle -1 \rangle)$.

Proof: Use isomorphism $\mathbb{Z}_2 \times \mathbb{Z}_m \cong \mathbb{Z}_{2m}$ to pass between φ and ϕ, deploy signs suitably.
Now let $|G| \equiv 2 \mod 4$, say $s_1/2, s_2, \ldots, s_r$ are odd.

A generalized optimal binary array of type z, GOBA(s), is a binary s-array ϕ such that

- $R_{\phi'}(x) \in \{0, \pm 2|H|\} \ \forall x \in E \setminus H$
- $\left|\{x \in E \mid R_{\phi'}(x) = 0\}\right| = |E|/2$ if $z_1 = 1$.

A generalized optimal binary sequence (GOBS) has $r = z_1 = 1$.

Theorem

Let φ be a binary sequence of length $2m$, $m > 1$ odd. Then φ is a GOBS(2m) \iff there is a GOBA(2, m) ϕ of type (1, 0) \iff there is a quasi-orthogonal cocycle $\psi \in \mathbb{Z}^2(\mathbb{Z}_{2m}, \langle -1 \rangle)$.

Proof: Use isomorphism $\mathbb{Z}_2 \times \mathbb{Z}_m \cong \mathbb{Z}_{2m}$ to pass between φ and ϕ, deploy signs suitably; $\psi = f_z \partial \phi$, where $f_z \notin B^2(\mathbb{Z}_{2m}, \langle -1 \rangle)$.
Summary of the variations for cocyclic arrays

Can vary: (i) entries (binary or quaternary); (ii) length ($\equiv 0$ or $\equiv 2 \mod 4$), orthogonal or quasi-orthogonal; (iii) split or not; (iv) dimension (1 or >1).

For binary arrays:

- Orthogonal cocycle ($n \equiv 0 \mod 4$)
- Quasi-orthogonal cocycle ($n \equiv 2 \mod 4$)

1-d non-split: GPBS
1-d non-split: GOBS (>1)
1-d split: PS
1-d split: OBS (>1)
1-d split: PBA (>1)
1-d split: OBA (>1)

Exercise: fill in all known existence results in each case.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Summary of the variations for cocyclic arrays

Can vary: (i) entries (binary or quaternary); (ii) length ($\equiv 0$ or 2 mod 4), orthogonal or quasi-orthogonal; (iii) split or not; (iv) dimension (1 or >1).
Summary of the variations for cocyclic arrays

Can vary: (i) entries (binary or quaternary); (ii) length ($\equiv 0$ or $2 \mod 4$), orthogonal or quasi-orthogonal; (iii) split or not; (iv) dimension (1 or >1). For binary arrays:

Orthogonal cocycle
Quasi-orthogonal cocycle ($n \equiv 0 \mod 4$)

1-d non-split: GPBS
1-d non-split: GOBS (>1)

1-d split: PS
1-d split: OBS (>1)

Exercise: fill in all known existence results in each case.
Summary of the variations for cocyclic arrays

Can vary: (i) entries (binary or quaternary); (ii) length ($\equiv 0$ or $2 \mod 4$), orthogonal or quasi-orthogonal; (iii) split or not; (iv) dimension (1 or >1).

For binary arrays:

<table>
<thead>
<tr>
<th>Orthogonal cocycle</th>
<th>Quasi-orthogonal cocycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>($n \equiv 0 \mod 4$)</td>
<td>($n \equiv 2 \mod 4$)</td>
</tr>
<tr>
<td>1-d non-split: GPBS</td>
<td>1-d non-split: GOBS</td>
</tr>
<tr>
<td>(>1)-d non-split: GPBA</td>
<td>(>1)-d non-split: GOBA</td>
</tr>
<tr>
<td>1-d split: PS</td>
<td>1-d split: OBS</td>
</tr>
<tr>
<td>(>1)-d split: PBA</td>
<td>(>1)-d split: OBA</td>
</tr>
</tbody>
</table>

Exercise: fill in all known existence results in each case.

Dane Flannery, joint with J. A. Armario

Quasi-orthogonal cocycles and optimal sequences
Summary of the variations for cocyclic arrays

Can vary: (i) entries (binary or quaternary); (ii) length ($\equiv 0$ or $2 \mod 4$), orthogonal or quasi-orthogonal; (iii) split or not; (iv) dimension (1 or > 1).

For binary arrays:

<table>
<thead>
<tr>
<th>Orthogonal cocycle</th>
<th>Quasi-orthogonal cocycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>($n \equiv 0 \mod 4$)</td>
<td>($n \equiv 2 \mod 4$)</td>
</tr>
<tr>
<td>1-d non-split: GPBS</td>
<td>1-d non-split: GOBS</td>
</tr>
<tr>
<td>(> 1)-d non-split: GPBA</td>
<td>(> 1)-d non-split: GOBA</td>
</tr>
<tr>
<td>1-d split: PS</td>
<td>1-d split: OBS</td>
</tr>
<tr>
<td>(> 1)-d split: PBA</td>
<td>(> 1)-d split: OBA</td>
</tr>
</tbody>
</table>

Exercise: fill in all known existence results in each case.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order \(2^{\text{odd}}\); say \(m\) odd).

Theorem

The following are equivalent:

- OQS of odd length \(m\);
- GOBS \((2^m)\);
- GOBA \((2^m, m)\) of type \((1, 0)\);
- quasi-orthogonal cocycles over \(\mathbb{Z}_{2^m}\).

Example.

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 1
\end{bmatrix}
\]

is a GOBA\((2, 3)\),

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1
\end{bmatrix}
\]

is a GOBA\((2^2, 5)\), both of type \((1, 0)\).

The corresponding OQS are \((1, i, 1\)\

\(R^* = (3, 1, 1)\) and \(R^* = (5, 1, 1, 1)\).

Their GOBS are \((1, 1, -1, -1, -1, 1)\) and \((1, -1, -1, 1, 1, 1, -1, 1)\).
Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order 2.odd; say odd = prime).

Theorem

The following are equivalent:

1. OQS of odd length m;
2. GOBS (2^m);
3. GOBA $(2,m)$ of type $(1,0)$;
4. quasi-orthogonal cocycles over \mathbb{Z}_2^m.

Example.

\[[1 - 1 1 1 1] \] is a GOBA($2, 3$),
\[[1 - 1 1 1 1] \] is a GOBA($2, 5$), both of type $(1, 0)$.

The corresponding OQS are $(1, i, 1)$, $(1, -1, 1, 1, 1)$, with $R^* = (3, 1, 1)$ and $R^* = (5, 1, 1, 1, 1, -1, 1, 1)$. Their GOBS are $(1, 1, -1, -1, -1, 1)$ and $(1, -1, -1, -1, 1, 1, 1, -1, 1, 1)$.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order 2.odd; say odd = prime).

Theorem

The following are equivalent: OQS of odd length m
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order 2.odd; say odd = prime).

Theorem

The following are equivalent: OQS of odd length m; $GOBS(2m)$.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order \(2 \cdot \text{odd}\); say \(\text{odd} = \text{prime}\)).

Theorem

The following are equivalent: OQS of odd length \(m\); GOBS(\(2m\)); GOBA(2, \(m\)) of type (1, 0)

Example.

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 1
\end{bmatrix}
\]

is a GOBA(2, 3),

\[
\begin{bmatrix}
1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1
\end{bmatrix}
\]

is a GOBA(2, 5), both of type (1, 0).

The corresponding OQS are (1, \(i\), 1), (1, \(-1\), 1, 1, 1), with \(R^* = (3, 1, 1)\) and \(R^* = (5, 1, 1, 1, 1)\).

Their GOBS are (1, 1, \(-1\), \(-1\), \(-1\), 1) and (1, \(-1\), \(-1\), 1, 1, 1, \(-1\), 1, 1).
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order $2 \cdot \text{odd}$; say odd $= \text{prime}$).

Theorem

The following are equivalent: OQS of odd length m; GOBS($2m$); GOBA($2, m$) of type $(1, 0)$; quasi-orthogonal cocycles over \mathbb{Z}_{2m}.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order $2 \cdot \text{odd}$; say odd = prime).

Theorem

The following are equivalent: OQS of odd length m; GOBS$(2m)$; GOBA$(2, m)$ of type $(1, 0)$; quasi-orthogonal cocycles over \mathbb{Z}_{2m}.

Example. $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ is a GOBA$(2, 3)$, $\begin{bmatrix} 1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 & 1 \end{bmatrix}$ is a GOBA$(2, 5)$, both of type $(1, 0)$.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order $2\cdot \text{odd}$; say odd = prime).

Theorem

The following are equivalent: OQS of odd length m; GOBS$(2m)$; GOBA$(2, m)$ of type $(1, 0)$; quasi-orthogonal cocycles over \mathbb{Z}_{2m}.

Example. $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is a GOBA$(2, 3)$, $\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ is a GOBA$(2, 5)$, both of type $(1, 0)$.

The corresponding OQS are $(1, i, 1)$, $(1, -1, 1, 1, 1)$, with $R_* = (3, 1, 1)$ and $R_* = (5, 1, 1, 1, 1)$.
Optimal quaternary sequences of odd length

Looking for quasi-orthogonal cocycles over the most basic kind of indexing group, cyclic (of order 2.odd; say odd = prime).

Theorem

The following are equivalent: OQS of odd length m; GOBS$(2m)$; GOBA$(2, m)$ of type $(1, 0)$; quasi-orthogonal cocycles over \mathbb{Z}_{2m}.

Example. $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ is a GOBA$(2, 3)$, $\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ is a GOBA$(2, 5)$, both of type $(1, 0)$.

The corresponding OQS are $(1, i, 1)$, $(1, -1, 1, 1, 1)$, with $R_* = (3, 1, 1)$ and $R_* = (5, 1, 1, 1, 1)$.

Their GOBS are $(1, 1, -1, -1, -1, 1)$ and $(1, -1, -1, -1, 1, 1, 1, -1, 1, 1)$.

The OQS/GOBS/GOBA/quasi-orthogonal cocycles exist for, e.g.,

- any prime $m \equiv 1 \mod 4$ (modified Legendre sequences)

The OQS/GOBS/GOBA/quasi-orthogonal cocycles exist for, e.g.,
- any prime $m \equiv 1 \mod 4$ (modified Legendre sequences)
- $m = (p^a + 1)/2$, p prime (C-sequences of Schotten).