50 Years of Crosscorrelation of m-Sequences

Tor Helleseth
Selmer Center
Department of Informatics
University of Bergen
Bergen, Norway

August 1, 2019
Outline

- Basic introduction to m-sequences
- Autocorrelation of m-sequences
- Crosscorrelation of m-sequences
- Gold Sequences and applications
- Overview over 50 year history
- Relations to Bent functions / APN functions / AB functions
- Conclusions and open problems
Basic introduction to m-sequences

May 25, 2016 Stephen Wolfram states in his blog:

Solomon Golomb (1932 – 2016)

The Most-Used Mathematical Algorithm Idea in History An octillion. A billion billion billion. That’s a fairly conservative estimate of the number of times a cellphone or other device somewhere in the world has generated a bit using a maximum–length linear-feedback shift register sequence. It’s probably the single most-used mathematical algorithm idea in history. And the main originator of this idea was Solomon Golomb, who died on May 1 - and whom I knew for 35 years.
Generating m-sequences

- Linear recurrence (over \mathbb{F}_p)
 - $s_{t+n} + c_{n-1}s_{t+n-1} + \cdots + c_0s_t = 0$

- Characteristic polynomial
 - $f(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0$

- Select $f(x)$ such that
 - $f(x)$ is irreducible of degree n
 - $f(x)$ divides $x^{p^n-1} - 1$
 - $f(x)$ do not divide $x^r - 1$ for any r, $1 \leq r < p^n - 1$

Then $f(x)$ generates an m-sequence $\{s_t\} = s_0, s_1, s_2, \cdots$ of period $p^n - 1$.

Example

The binary m-sequence generated by $s_{t+4} + s_{t+1} + s_t = 0$ is:

$\{s_t\} = 000100110101111$
Binary m-sequences

\[s_{t+4} = s_{t+1} + s_t \]

\[f(x) = x^4 + x + 1 \]

\[\{S_t\} = 000100110101111 \ldots \]

- Period \(\varepsilon = 2^n - 1 \) (if the characteristic polynomial \(f(x) \) has degree \(n \))
- Balanced (except for a missing 0)
- Run property

\[s_{t+\tau} - s_t = s_{t+\gamma} \]

- If \(gcd(d, 2^n - 1) = 1 \), then its decimation \(\{s_{dt}\} \) is also an m-sequence

\[\{s_{2t}\} = \{s_{t+\mu}\} \] for some \(\mu \)

- The trace mapping is: \(Tr : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_2 \) where \(Tr(x) = \sum_{i=0}^{n-1} x^{2^i} \)
- Let \(f(\alpha) = 0 \) then (after suitable cyclic shift)

\[s_t = Tr(\alpha^t) \]
Correlation of Sequences
Let \(\{a_t\} \) and \(\{b_t\} \) be sequences of period \(\epsilon \) over the alphabet \(\mathbb{F}_p \).

Crosscorrelation

Then crosscorrelation between \(\{a_t\} \) and \(\{b_t\} \) at shift \(\tau \) is

\[
\theta_{a,b}(\tau) = \sum_{t=0}^{\epsilon-1} \omega^{a_t+\tau-b_t} \text{ where } \omega = \exp \frac{2\pi i}{p}
\]

Autocorrelation

Then autocorrelation of \(\{a_t\} \) at shift \(\tau \) is

\[
\theta_{a,a}(\tau) = \sum_{t=0}^{\epsilon-1} \omega^{a_t+\tau-a_t} \text{ where } \omega = \exp \frac{2\pi i}{p}
\]
Ideal Two-Level Autocorrelation

Theorem

Let \(\{s_t\} \) be an m-sequence of period \(p^n - 1 \). The autocorrelation is

\[
C_1(\tau) = \begin{cases}
 p^n - 1 & \text{if } \tau = 0 \pmod{p^n - 1} \\
 -1 & \text{if } \tau \neq 0 \pmod{p^n - 1}.
\end{cases}
\]

Proof.

Let \(\tau \neq 0 \pmod{p^n - 1} \). Then since m-sequences are balanced:

\[
C_1(\tau) = \sum_{t=0}^{p^n-2} \omega^{s_t+\tau-s_t} = \sum_{t=0}^{p^n-2} \omega^{s_t+\gamma} = -1
\]
Golomb’s influence on the early applications of m-sequence
Golomb’s Influence on m-sequences
Golomb’s influence on m-sequences

Applications of m-sequences in the 1960s

- Interplanetary ranging system (1958)
 - Orbit determination of Explorer I
 - Signal sent back from Explorer I was modulated by an m-sequence

- Determining the position of Venus (1961)
 - Bounced signal from Venus and detected return signal.
 - Improved accuracy of location of Venus by a factor of 10^3

- Experiment verifying Einstein General Relativity Theory
 - Experiment designed (1960)
 - Experiment performed using Mars Mariner 9 (1969).

Major Prizes

- Shannon Award 1985
- National Medal of Science 2013
- Franklin Medal 2016
Crosscorrelation of m-sequences
Crosscorrelation of m-sequences

Basic results on crosscorrelation of m-sequences

- Let \(\{s_t\} \) be an m-sequence of period \(p^n - 1 \)
- Let \(\{s_{dt}\} \) be a decimated m-sequence i.e., \(\gcd(d, p^n - 1) = 1 \)
- The crosscorrelation between the two m-sequences is

\[
C_d(\tau) = \sum_{t=0}^{p^n-2} \omega^{s_{dt} - s_t + \tau} = -1 + \sum_{x \in \mathbb{F}_{p^n}} \omega^{Tr(x^d + ax)}
\]

where \(\alpha \) is a primitive element in \(\mathbb{F}_{p^n} \) and \(a = \alpha^\tau \).
- In the case \(d = p^i \mod p^n - 1 \) then \(C_d(\tau) \) is two-valued (autocorrelation)
- In all other cases at least three values occur when \(\tau = 0, 1, \cdots, p^n - 2 \)
Three valued crosscorrelation: Gold sequences
Theorem (Gold(1968))

Let \(d = 2^k + 1 \) and \(e = \gcd(n, k) \) where \(\frac{n}{\gcd(n, k)} \) is odd. Then \(C_d(\tau) \) has three-valued crosscorrelation with distribution:

\[
\begin{align*}
-1 + 2^{\frac{n+e}{2}} & \quad \text{occurs} \quad 2^{n-e-1} - 2^{\frac{n-e-2}{2}} \quad \text{times} \\
-1 & \quad \text{occurs} \quad 2^n - 2^{n-e} - 1 \quad \text{times} \\
-1 - 2^{\frac{n+e}{2}} & \quad \text{occurs} \quad 2^{n-e-1} + 2^{\frac{n-e-2}{2}} \quad \text{times}
\end{align*}
\]

In particular when \(\gcd(k, n) = 1 \) then the values of \(C_d(\tau) + 1 \) are

\[
\sum_{x \in \mathbb{F}_{2^n}} (-1)^{Tr(x^d + ax)}
\]

belong to \(\{0, \pm 2^{\frac{n+1}{2}}\} \).
Applications of sequences to CDMA

CDMA

In Code-Division Multiple Access (CDMA) one needs large families \mathcal{F} with good correlation properties.

Parameters of sequence families

Parameters of a family are denoted $(\varepsilon, M, \theta_{\text{max}})$.

- ε is the period of the sequences in \mathcal{F}.
- M is the size of the family (number of cyclically distinct sequences in \mathcal{F}).
- θ_{max} is the maximal (nontrivial) value of the auto- or cross-correlation of the sequences in \mathcal{F} (except when sequences are the same and shift $\tau = 0$).
Gold sequences (Example m=3)

\[
\begin{align*}
(s_t) & : \ 1001011 \\
(s_{3t}) & : \ 1110100 \\
(s_t+s_{3t}) & : \ 0111111 \\
(s_t+s_{3t+1}) & : \ 0100010 \\
(s_t+s_{3t+6}) & : \ 1110001
\end{align*}
\]

M = |F| = 9
\(\theta_{\text{max}} = 5\)
The Gold family - Example

The Gold family

The Gold family is used in GPS and in the 3G standard for wireless communication.

Construction of the Gold sequence family

Let \(\{s_t\} \) be a binary m-sequence of period \(2^n - 1 \) where \(n \) is odd, \(d = 2^k + 1 \) and \(\gcd(k, n) = 1 \)

\[G = \{s_t\} \cup \{s_{dt}\} \cup \{\{s_{t+\tau} - s_{dt}\} \mid \tau = 0, 1, \ldots, 2^n - 2\} \]

The parameters of the Gold family \(G \) is:

- \(\varepsilon = 2^n - 1 \) is period of the sequences in the family
- \(M = 2^n + 1 \) is the size of the family \(G \)
- \(\theta_{\text{max}} = 2^{(n+1)/2} + 1 \) is the maximal value of the nontrivial auto- or crosscorrelation of the sequences in \(G \)

The Gold family is optimal since no other family of sequences of the same length and size can have a lower \(\theta_{\text{max}} \)
Gold sequence family is based upon on sequences generated by

\[x^{25} + x^3 + 1 \text{ and } x^{25} + x^3 + x^2 + x + 1 \]
3G Scrambling Code

Scrambling code design for 3G Wireless Cellular Communication

W-CDMA Uplink

Data

Spreading Walsh code

Gain factor

\(\star \)

Short Scrambling code

\(\star \)

Short Scrambling code generator

\(\star \)

\[\begin{align*}
 a(i) &\mod 4 \quad \text{mod 4} \\
 b(i) &\mod 2 \quad \text{mod 2} \\
 d(i) &\mod n \quad \text{addition} \\
\end{align*} \]

\(\star \)

\[\begin{align*}
 a(i) &\mod 4 \\
 b(i) &\mod 2 \\
 d(i) &\text{addition} \\
\end{align*} \]

\(\star \)

\[\begin{align*}
 a(i) &\mod 4 \\
 b(i) &\mod 2 \\
 d(i) &\text{addition} \\
\end{align*} \]

References

P. V. Kumar

T. Helleseth

A. R. Calderbank

A. R. Hammons Jr.,

``Large Families of Quaternary Sequences with Low Correlation,''

Scrambling code design for 3G Wireless Cellular Communication
Short Scrambling Code

Family $S(2)$ of sequences (mod 4)
Distribution of the crosscorrelation of m-sequences and open problems
Some Properties of $C_d(\tau)$

- $C_d(\tau)$ is a real number.
- $C_d(\tau)$ and $C_{d'}(\tau)$ have the same distribution when $d \cdot d' = 1 \pmod{p^n - 1}$ or $d' = d \cdot p^i \pmod{p^n - 1}$.
- $\sum_{\tau} (C_d(\tau) + 1) = p^n$.
- $\sum_{\tau} (C_d(\tau) + 1)^2 = p^{2n}$.
- $\sum_{\tau} C_d(\tau)^k = -(p - 1)^k + 2(-1)^{k-1} + a_k p^{2n}$ where a_k is the number of nonzero solutions $x_i \in \mathbb{F}_{p^n}$ of

\[
\begin{align*}
x_1 &+ x_2 + \cdots + x_{k-1} + 1 = 0 \\
x_1^d &+ x_2^d + \cdots + x_{k-1}^d + 1 = 0
\end{align*}
\]
When is $C_d(\tau)$ Two-Valued?

Theorem

If $d \notin \{1, p, p^2, \cdots, p^{n-1}\}$ (i.e., when the two m-sequences are cyclically distinct) then $C_d(\tau)$ is at least 3-valued.

Proof.

Suppose $C_d(\tau)$ has two values x and y occurring r and s times respectively. Then

\[
\sum_{\tau} C_d(\tau) = r + s = p^n - 1
\]
\[
\sum_{\tau} C_d(\tau)^2 = rx + sy = 1
\]
\[
\sum_{\tau} C_d(\tau)^2 = rx^2 + sy^2 = p^{2n} - p^n - 1
\]

This leads to the equation (eliminating r and s)

\[
(p^n x - (x + 1))(p^n y - (y + 1)) = p^{2n}(2 - p^n)
\]

For $p = 2$ this is a Diophantine equation with no valid integer solutions. (Note $\{x, y\} = \{-1, p^n - 1\}$) corresponds to two-weight autocorrelation.

For $p > 2$ the result follows similarly from divisibility properties in $\mathbb{Z}[\omega]$. \qed
The crosscorrelation $C_d(\tau)$ is known to be three-valued in the cases:

- **(Gold 1968):** $d = 2^k + 1$, $\frac{n}{\gcd(n,k)}$ odd
- **(Kasami 1968), (Welch 1960’s):** $d = 2^{2k} - 2^k + 1$, $\frac{n}{\gcd(n,k)}$ odd
- **Welch’s conjecture:** (Canteaut, Charpin, Dobbertin (2000))
 $$d = 2^{\frac{n-1}{2}} + 3, \ n \ odd$$
- **Niho’s conjecture:** (Hollmann and Xiang (2001), Dobbertin (1999))
 $$d = 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} - 1 \text{ when } n = 1 \pmod{4}$$
 $$= 2^{\frac{n-1}{2}} + 2^{\frac{3n-1}{4}} - 1 \text{ when } n = 3 \pmod{4}$$
- **Cusick and Dobbertin (1996)**
 $$d = 2^{\frac{n}{2}} + 2^{\frac{n+2}{2}} + 1 \text{ when } n = 2 \pmod{4}$$
 $$= 2^{\frac{n+2}{2}} + 3 \text{ when } n = 2 \pmod{4}$$
The 4-Valued Conjecture

Conjecture (Helleseth 1971, 1976)

Let p be any prime. If $n = 2^i$ then $C_d(\tau)$ takes on at least 4 values.

Theorem (Katz 2012)

The conjecture is true for $p = 2$ and $p = 3$.

The case $p > 3$ is still open.
The conjecture is equivalent to proving one of the following two statements:

(1) \[\sum_{x} \omega \text{Tr}(x^d - bx) = -1 \]

for some nonzero \(b \).

(2) The system of equations

\[
\begin{align*}
x_0 + \alpha x_1 + \cdots + \alpha^{q-2} x_{q-2} &= 0 \\
x_0^d + x_1^d + \cdots + x_{q-2}^d &= 0
\end{align*}
\]

has exactly \(q^{q-3} \) solutions \(x_i \in \mathbb{F}_{p^n} \) where \(q = p^n \).
Known 3-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2^k + 1$</td>
<td>$n/\gcd(n, k)$ odd</td>
<td>Gold, 1968</td>
</tr>
<tr>
<td>2</td>
<td>$2^{2k} - 2^k + 1$</td>
<td>$n/\gcd(n, k)$ odd</td>
<td>Kasami, 1971</td>
</tr>
<tr>
<td>3</td>
<td>$2^{n/2} - 2^{(n+2)/4} + 1$</td>
<td>$n \equiv 2 \pmod{4}$</td>
<td>Cusick et al., 1996</td>
</tr>
<tr>
<td>4</td>
<td>$2^{n/2+1} + 3$</td>
<td>$n \equiv 2 \pmod{4}$</td>
<td>Cusick et al., 1996</td>
</tr>
<tr>
<td>5</td>
<td>$2^{(n-1)/2} + 3$</td>
<td>n odd</td>
<td>Canteaut et al., 2000</td>
</tr>
<tr>
<td>6</td>
<td>$2^{(n-1)/2} + 2^{(n-1)/4} - 1$</td>
<td>$n \equiv 1 \pmod{4}$</td>
<td>Hollmann et al., 2001</td>
</tr>
<tr>
<td>7</td>
<td>$2^{(n-1)/2} + 2^{(3n-1)/4} - 1$</td>
<td>$n \equiv 3 \pmod{4}$</td>
<td>Hollmann et al., 2001</td>
</tr>
</tbody>
</table>

Remarks: (1) No. 5 is the Welch’s conjecture; (2) Nos. 6 and 7 are the Niho’s conjectures

Open Problem

Show that the table contains all decimations with 3-valued correlation function.
Known 3-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(p^{2k} + 1)/2$</td>
<td>$n/\gcd(n, k)$ odd</td>
<td>Trachtenberg, 1970</td>
</tr>
<tr>
<td>2</td>
<td>$p^{2k} - p^k + 1$</td>
<td>$n/\gcd(n, k)$ odd</td>
<td>Trachtenberg, 1970</td>
</tr>
<tr>
<td>3</td>
<td>$2 \cdot 3^{(n-1)/2} + 1$</td>
<td>n odd</td>
<td>Dobbertin et al., 2001</td>
</tr>
<tr>
<td>4</td>
<td>$2 \cdot 3^{(n-1)/4} + 1$</td>
<td>$n \equiv 1 \pmod{4}$</td>
<td>Katz and Langevin 2013</td>
</tr>
<tr>
<td>5</td>
<td>$2 \cdot 3^{(3n-1)/4} + 1$</td>
<td>$n \equiv 3 \pmod{4}$</td>
<td>Katz and Langevin 2013</td>
</tr>
</tbody>
</table>

Remarks: (1) Nos. 1 and 2 are due to Helleseth for even n; (2) The result obtained by Xia et al. (IEEE IT 60(11), 2014) is covered by No. 1. The 3-valued correlation function in No. 4 and No. 5 was conjectured by Dobbertin et al. in 2001.

Open Problems

- Show that the table contains all decimations with 3-valued correlation function for $p > 3$.
Cross Correlation Functions of Niho Exponents
Let p be a prime, $n = 2m$ a positive integer and $q = p^m$. Let \mathbb{F}_q denote the finite field with q elements.

A positive integer d is called a Niho exponent (with respect to \mathbb{F}_{q^2}) if there exists some $0 \leq j \leq n - 1$ such that

$$d \equiv p^j \pmod{q - 1}$$

- Normalized form: $j = 0$, i.e., $d = (q - 1)s + 1$.
- Equivalence class: cyclotomic coset, inverse, etc.
Niho exponents and solutions of equations

Let \(n = 2^m \) and \(d = 1 \pmod{2^m - 1} \). Then each \(x \in \mathbb{F}_{2^n} \) can be uniquely written as \(x = yz \) where \(y \in \mathbb{F}_{2^m} \) and \(z \in U = \{ z \mid z^{2^m+1} = 1 \} \).

Then

\[
C_d(\tau) = \sum_{x \in \mathbb{F}_{2^n}^*} (-1) \cdot \text{Tr}_{n}(x^d + ax)
\]

\[
= \sum_{y \in \mathbb{F}_{2^m}^*, z \in U} (-1) \cdot \text{Tr}_{n}(y(z^d + az))
\]

\[
= \sum_{y \in \mathbb{F}_{2^m}^*, z \in U} (-1) \cdot \text{Tr}_m(y(z^d + az + z^{-d} + a^{2^m}z^{-1}))
\]

\[
= (2^m - 1)N + (2^m + 1 - n) - 1
\]

\[
= -1 + 2^m(N - 1)
\]

where \(N = |\{ z \in U \mid z^d + az + z^{-d} + a^{2^m}z^{-1} = 0 \}| \).
Correlation Function

Known 4-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2^{n/2+1} - 1$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Niho, 1972</td>
</tr>
<tr>
<td>2</td>
<td>$(2^{n/2} + 1)(2^{n/4} - 1) + 2$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Niho, 1972</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{2^{(n/2+1)r-1}}{2^r-1}$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Dobbertin, 1998</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{2^n+2^s+1-2^{n/2+1}-1}{2^s-1}$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Helleseth et al., 2005</td>
</tr>
<tr>
<td>5</td>
<td>$(2^{n/2} - 1)\frac{2^r}{2^r \pm 1} + 1$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Dobbertin et al., 2006</td>
</tr>
</tbody>
</table>

Remarks: (1) All are the Niho type decimations; (2) No. 5 covers previous four cases.

Conjecture (Dobbertin, Helleseth et al., 2006)

No. 5 covers all 4-valued cross correlation for Niho type decimation.
Known 4-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2 \cdot p^{n/2} - 1$</td>
<td>$p^{n/2} \not\equiv 2 \pmod{3}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>2</td>
<td>$3^k + 1$</td>
<td>$n = 3k, k$ odd</td>
<td>Zhang et al., 2013</td>
</tr>
<tr>
<td>3</td>
<td>$3^{2k} + 2$</td>
<td>$n = 3k, k$ odd</td>
<td>Zhang et al., 2013</td>
</tr>
</tbody>
</table>

Remarks: (1) No. 1 is a Niho type decimation; (2) Nos. 2 and 3 are due to Zhang et al. if $\gcd(k, 3) = 1$ and due to Xia et al. if $\gcd(k, 3) = 3$.

Open Problem

Find new 4-valued $C_d(\tau)$ for any prime p.

Tor Helleseth (Selmer Center) 50 Years of Crosscorrelation of m-Sequences Kalamata
Known 5 or 6-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2^{n/2} + 3$</td>
<td>$n \equiv 0 \pmod{2}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>2</td>
<td>$2^{n/2} - 2^{n/4} + 1$</td>
<td>$n \equiv 0 \pmod{8}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{2^n - 1}{3} + 2^i$</td>
<td>$n \equiv 0 \pmod{2}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>4</td>
<td>$2^{n/2} + 2^{n/4} + 1$</td>
<td>$n \equiv 0 \pmod{4}$</td>
<td>Dobbertin, 1998</td>
</tr>
</tbody>
</table>

Remarks: (1) No. 1 was conjectured by Niho; (2) No. 3 is of Niho type if $n/2$ is odd.

Open Problem (Dobbertin, Helleseth et al., 2006)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (2^{n/2} - 1) + 1$.
Known 5 or 6-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

<table>
<thead>
<tr>
<th>No.</th>
<th>d-Decimation</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(p^n - 1)/2 + p^i$</td>
<td>$p^n \equiv 1 \pmod{4}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>2</td>
<td>$(p^n - 1)/3 + p^i$</td>
<td>$p \equiv 2 \pmod{3}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>3</td>
<td>$p^{n/2} - p^{n/4} + 1$</td>
<td>$p^{n/4} \not\equiv 2 \pmod{3}$</td>
<td>Helleseth, 1976</td>
</tr>
<tr>
<td>4</td>
<td>$3^k + 1$</td>
<td>$n = 3k, k$ even</td>
<td>Zhang et al., 2013</td>
</tr>
<tr>
<td>5</td>
<td>$3^{2k} + 2$</td>
<td>$n = 3k, k$ even</td>
<td>Zhang et al., 2013</td>
</tr>
</tbody>
</table>

Remarks: (1) No. 1 is of Niho type if $n/2$ is odd; (2) Nos. 4 and 5 are due to Zhang et al. if $\gcd(k, 3) = 1$ and due to Xia et al. if $\gcd(k, 3) = 3$.

Open Problem (Dobbertin, Helleseth and Martinsen, 1999)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (3^{n/2} - 1) + 1$.
Cross Correlation Function: Recent Results
Let k be a positive integer and N_k denote the number of solutions to

$$x_1 + x_2 + \cdots + x_k = 0,$$
$$x_1^d + x_2^d + \cdots + x_k^d = 0.$$

Question: How to determine the values of N_k?

Open Problem (Dobbertin, Helleseth et al., 2006)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (2^{n/2} - 1) + 1$.

Solved! (surprising connection with the Zetterberg code)

by Xia, Li, Zeng and Helleseth 2016 (IEEE IT, 62(12), 2016)
Open Problem (Dobbertin, Helleseth and Martinsen, 1999)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (3^{n/2} - 1) + 1$.

Solved!

by Xia, Li, Zeng and Helleseth 2017 (IEEE IT, 63(11), 2016).

Future Work

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (p^{n/2} - 1) + 1$ for $p > 3$.

This case is much more complicated!
Bent Functions From Niho Exponents
Bent Functions From Niho Exponents

Bent functions have significant applications in cryptography and coding theory.

Walsh Transform

Let $f(x)$ be a function from \mathbb{F}_{2^n} to \mathbb{F}_2. The Walsh transform of $f(x)$ is defined by

$$\hat{f}(\lambda) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \text{Tr}(\lambda x)}, \lambda \in \mathbb{F}_{2^n}.$$

Bent Function

A function $f(x)$ from \mathbb{F}_{2^n} to \mathbb{F}_2 is called Bent if $|\hat{f}(\lambda)| = 2^{n/2}$ for any $\lambda \in \mathbb{F}_{2^n}$.

Problem Description

Let \(f(x) \) be a function from \(\mathbb{F}_{2^n} \) to \(\mathbb{F}_2 \) defined by

\[
f(x) = \sum_{i=1}^{2^n-2} \text{Tr}(a_i x^i), \quad a_i \in \mathbb{F}_{2^n}.
\]

Then how to choose \(a_i \) and \(i \) such that \(f(x) \) is Bent?

Remarks

Known infinite classes of Boolean Bent functions:

1. Monomial Bent: only 5 classes
2. Binomial Bent: only about 6 classes
3. Polynomial form: quadratic form, Dillon type and Niho type
Known Constructions of Niho Bent Functions

Table: Known Niho Bent Functions

<table>
<thead>
<tr>
<th>No.</th>
<th>Class of Functions</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{Tr}_1^n(ax^{(2^m-1)^{\frac{1}{2}}+1})$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>$\text{Tr}_1^n(ax^{(2^m-1)^{\frac{1}{2}}+1} + bx^{(2^m-1)^{3+1}})$</td>
<td>Dobbertin et al.</td>
<td>2006</td>
</tr>
<tr>
<td>3</td>
<td>$\text{Tr}_1^n(ax^{(2^m-1)^{\frac{1}{2}}+1} + bx^{(2^m-1)^{\frac{1}{4}}+1})$</td>
<td>Dobbertin et al.</td>
<td>2006</td>
</tr>
<tr>
<td>4</td>
<td>$\text{Tr}_1^n(ax^{(2^m-1)^{\frac{1}{2}}+1} + bx^{(2^m-1)^{\frac{1}{6}}+1})$</td>
<td>Dobbertin et al.</td>
<td>2006</td>
</tr>
<tr>
<td>5</td>
<td>$\text{Tr}1^n(ax^{(2^m-1)^{\frac{1}{2}}+1} + \sum{i=1}^{2^r-1-1} x^{(2^m-1)^{\frac{i}{2^r}}+1})$</td>
<td>Leander, Kholosha</td>
<td>2006</td>
</tr>
</tbody>
</table>

Remarks: (1) No. 1 is trivial; (2) No. 3 is covered by No. 5
Binomial Bent Functions

A simple family of binomial bent functions which have a quite complex dual bent functions are due to Helleseth and Kholosha (2010).

Theorem (Helleseth and Kholosha (2010))

Let \(n = 4k \). Then \(p \)-ary function \(f(x) \) given by

\[
f(x) = \text{Tr}_n \left(x^{p^{3k}+p^{2k}-p^k+1} + x^2 \right)
\]

is a weakly regular bent function and

\[
\hat{f}(y) = -p^{2k} \omega \text{Tr}_k(x_0) / 4,
\]

where \(x_0 \) is a unique root in \(\text{GF}(p^k) \) of the polynomial

\[
y^{p^{2k}+1} + (y^2 + X)(p^{2k}+1)/2 + y^p(p^{2k}+1) + (y^2 + X)p^k(p^{2k}+1)/2.
\]
APN functions and AB functions
Almost Perfect Nonlinear (APN) Functions

Definition

A function \(f : \mathbb{F}_{2^n} \rightarrow \mathbb{F}_{2^n} \) is almost perfect nonlinear (APN) if for all \(a, b \in \mathbb{F}_{2^n}, a \neq 0 \), the equation

\[
f(x + a) - f(x) = b
\]

has at most two solutions \(x \in \mathbb{F}_{2^n} \).

- More generally such an \(f \) is called a differentially 2-uniform function.
- Optimal resistant against the differential attack.
A Simple APN Example $f(x) = x^3$

Theorem

The function $f(x) = x^3$ is APN

Proof.

Let $f(x) = x^3$ be defined over \mathbb{F}_{2^n}. Then

$$f(x + a) + f(x) = x^2a + xa^2 + a^3 = b$$

which has at most two solutions $x \in \mathbb{F}_{2^n}$ for any $a \neq 0$ and $b \in \mathbb{F}_{2^n}$. □
The Walsh Transform

The nonlinearity $NL(F)$ of an (n, m) function F can be expressed by means of the Walsh transform. The Walsh transform of F at $(\alpha, \beta) \in \mathbb{F}_{2n} \times \mathbb{F}_{2m}$ is defined by

$$W_F(\alpha, \beta) = \sum_{x \in \mathbb{F}_{2n}} (-1)^{Tr_1^m(\beta F(x)) + Tr_1^n(\alpha x)}$$

and the Walsh spectrum of F is the set

$$\{W_F(\alpha, \beta) : \alpha \in \mathbb{F}_{2n}, \beta \in \mathbb{F}_{2m}^*\}.$$

The Walsh spectrum of AB functions consists of three values $0, \pm 2^{\frac{n+1}{2}}$. The Walsh spectrum of a bent function is $\{\pm 2^{\frac{n}{2}}\}$.

Theorem (Chabaud and Vaudenay (1994))

Any AB function is APN.
Table 1a. Known APN power functions x^d on \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>Functions</th>
<th>Exponents d</th>
<th>Conditions</th>
<th>$d^\circ(x^d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>$2^i + 1$</td>
<td>gcd$(i, n) = 1$</td>
<td>2</td>
</tr>
<tr>
<td>Kasami</td>
<td>$2^{2i} - 2^i + 1$</td>
<td>gcd$(i, n) = 1$</td>
<td>$i + 1$</td>
</tr>
<tr>
<td>Welch</td>
<td>$2^t + 3$</td>
<td>$n = 2t + 1$</td>
<td>3</td>
</tr>
<tr>
<td>Niho</td>
<td>$2^t + 2^{\frac{t}{2}} - 1$, t even</td>
<td>$n = 2t + 1$</td>
<td>$(t + 2)/2$</td>
</tr>
<tr>
<td></td>
<td>$2^t + 2^{\frac{3t+1}{2}} - 1$, t odd</td>
<td></td>
<td>$t + 1$</td>
</tr>
<tr>
<td>Inverse</td>
<td>$2^{2t} - 1$</td>
<td>$n = 2t + 1$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>Dobbertin</td>
<td>$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$</td>
<td>$n = 5i$</td>
<td>$i + 3$</td>
</tr>
</tbody>
</table>
Table 1b. Known AB power functions x^d on \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>Functions</th>
<th>Exponents d</th>
<th>Conditions</th>
<th>$d^\circ (x^d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>$2^i + 1$</td>
<td>$\gcd(i, n) = 1$</td>
<td>2</td>
</tr>
<tr>
<td>Kasami</td>
<td>$2^{2i} - 2^i + 1$</td>
<td>$\gcd(i, n) = 1$</td>
<td>$i + 1$</td>
</tr>
<tr>
<td>Welch</td>
<td>$2^t + 3$</td>
<td>$n = 2t + 1$</td>
<td>3</td>
</tr>
<tr>
<td>Niho</td>
<td>$2^t + 2^{\frac{t}{2}} - 1$, t even</td>
<td>$n = 2t + 1$</td>
<td>$(t + 2)/2$</td>
</tr>
<tr>
<td></td>
<td>$2^t + 2^{\frac{3t+1}{2}} - 1$, t odd</td>
<td>$n = 2t + 1$</td>
<td>$t + 1$</td>
</tr>
</tbody>
</table>
Thank You!

Questions? Comments? Suggestions?